FEATURED ARTICLE: The long & short of modern myopia control
Andrew D. Pucker, O.D.

An effective method for preventing myopia development would provide a significant benefit to millions of people around the world by decreasing their reliance on optical correction and reducing the condition’s economic burden on health and society.\(^1\) Therefore, developing an effective and safe means of preventing and/or treating this condition has been of great importance to the medical community. While treatments related to under-correcting spectacles, gas permeable contact lenses, and progressive addition lenses have previously been thought to provide benefit, they currently lack favor,\(^2\)-\(^6\) and investigators have turned their focus to the more recent approaches below.

Optical Treatments:

An early study by Wiesel and Raviola with monkeys serendipitously demonstrated that ocular growth could be altered with visual form deprivation.\(^7\) This work subsequently led to numerous experiments, which determined with various animal models that myopic defocus results in slowed eye growth and hyperopic defocus results in accelerated eye growth.\(^8\)-\(^10\) It was originally assumed that foveal stimulation produced these changes, yet after Smith and Colleagues demonstrated with a laser ablation experiment that the peripheral retina and not the fovea was primarily responsible for induced ocular growth,\(^11\) the field turned its focus to optically correcting the image on the peripheral retina and the below interventions:

- **Corneal Refractive Therapy (CRT):** CRTs are believed to work by altering the optics of the eye by flattening the central cornea and thickening the surrounding midperipheral cornea.\(^5,\)^\(^12\) This corneal rearmament theoretically results in less peripheral hyperopia and slowed myopic growth.\(^5\) CRT has been shown to be able to reduce myopia progression by up to 50.0 percent.\(^4,\)^\(^13,\)^\(^14\)

- **Multifocal Contact Lenses (MCL):** Center-distance MCLs are also thought to work by reducing peripheral retinal hyperopia; however, the image is altered by the optics of the contact lens instead of by corneal reshaping.\(^15\) MCLs have also shown significant promise,\(^4\) and Walline and Coworkers are currently working to rigorously test this method (NIH Reporter).

Non-Optical Treatments:

While the above optical treatments are currently the most favored means of combating myopic growth, there are two additional lines of research that have rendered promise.

- **Muscarinic antagonists:** Atropine is a non-specific muscarinic antagonist that has consistently demonstrated remarkable reduction in myopic progression\(^16,\)^\(^17\) but its negative side (e.g., cycloplegia) have prevented it from being a viable treatment. Nevertheless, recent work with low dose atropine (0.01 percent) has produced a similar reduction in myopic growth compared to higher concentrations of the drug (e.g., 0.5 percent) while lacking the undesired side effects.\(^16,\)^\(^17\)

- **Time Spent Outdoors:** Several studies have shown that time spent outdoors (not sports) can protect against myopia.\(^3\) While not all studies have been favorable, the larger, better designed studies have found positive results,\(^3\) and large, school-based clinical trials are currently underway in Asia to more rigorously test this treatment.\(^3\)
Myopia treatments and theories are continually evolving, and the above ongoing studies will surely provide additional insight into how to make better myopia treatments - though true prevention of myopia will not be possible until its genetics and risk factors are better defined.

References:
5. Choo JD, Holden BA. The prevention of myopia with contact lenses. Eye & contact lens 2007;33:371-2; discussion 82.
10. Smith EL, 3rd, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision research 1999;39:1415-35.

Dr. Pucker received his Doctor of Optometry and Master of Science degrees from The Ohio State University. He is currently a clinical instructor pursuing a Ph.D. in vision science at The Ohio State University. Dr. Pucker’s research interests include the tear film, ocular inflammation, and contact lenses.

Please close this browser window to return to the CLCS Newsletter